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2

Probability functions

We are going to dive into the deep end and start simulating random variables. We will
brush over a few important topics that will be covered in depth later. For now, if you do
not understand something, don’t worry. Just type in the code and focus on what we are
doing, and we will get to how to do it. As you work through the examples, be sure to
type them into a script which you will save. Remember that you can execute each line
by pressing CTRL+ENTER in RStudio. Watch the changes which take place in the
Environment tab.

We will start by simulating a block of claims. First, we will establish a placeholder for
the average claim size and the number of claims we will simulate. We will tackle random
frequency later.

average_claim_size <- 5e3

num_claims <- 10e3

In the statements above, I am using something which looks like an arrow, placed to the
right of some text. The <- symbol will assign a value to an object. Let’s talk about
what each of those words means:

• assign: When we assign something, we are creating space in your computer’s
memory. This space may contain more or less anything and it will change when
you tell it to change.

• value: The value is what is being stored in the memory that you created during
assignment. As noted above, the value may change. It only makes sense to talk
about the value at a specific point in time.

• object: An object may be thought of as a container for a value. This container has
a name and the name is quite important. The name allows us to reason about
objects as something other than space in a computer’s memory. Using a name like
average claim size anchors it to a real-world concept. This allows us to think
about the object without worrying about its value, similar to the way that symbols
in algebra allow us to think about equations without needing to worry about the
underlying numbers.
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What is meaningful about assignment in R, versus other languages is
all of the code that we did not type. In other languages, we would have
had to specify what kind of information the object would contain and
possibly what parts of the program could access the object’s value. In
VBA, that would look something like:
Public average claim size as Double

average claim size = 5000

Financial values are often quite large and stated in thousands. Scientific notation will
help us quickly type out values in a way that makes them easy to read. See if you can
detect the difference between the code below and the lines above.

average_claim_size <- 5000

num_claims <- 1000

I will strongly recommend that you only use scientific notation in increments of 3. This
is consistent with how we tend to talk about numbers, i.e. “ten million”, “one hundred
thousand”, “six billion”, etc.

Let’s simulate some claims. The exponential distribution only has one parameter, so it’s
very easy to use. Type and execute the line below.

claims <- rexp(n = num_claims, rate = 1 / average_claim_size)

We are once again creating an object. This time our object is called claims and we
assigning it a value. This time, we did not type out the value by hand. Instead, we
invoked a function called rexp(). The name “rexp” is short for “random exponential”.
You are undoubtedly familiar with functions, either through programming in other
languages, or from entering them in a spreadsheet. In R, a function may be recognized
whenever we see some text, followed by a left parentheses, a comma-separated list of
text and then a closing parentheses. The comma-separated list will be referred to as
arguments or parameters. Not every function will have parameters. We will talk more
about functions in Chapter 4.

In the line above, each argument has some text, followed by an equal sign and then
more text. The text to the left of the equal sign is the argument’s name and the text to
the right is the argument’s value. Most arguments to a function are named, to make it
easy to understand their purpose1. R permits us to be very explicit about the names of a
function’s arguments, which means that we can invoke the function with the arguments
in a different order, as follows:
1We will see an exception to this in Chapter 4.
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claims <- rexp(rate = 1 / average_claim_size, n = num_claims)

You may have noticed some changes in the value of the claims object displayed in the
Environment tab. This is because rexp() is performing a random simulation, so the
value returned will change each time that we run the function, even if all of the inputs
are the same. If we don’t want this to happen, we can insist on a specific starting point
for the chain of simulations, by using the function set.seed(). Whenever we want to
reproduce random results, we simply call set.seed() again with the same argument,
which we will call the random number seed, or simply seed.

set.seed(1234)

claims <- rexp(rate = 1 / average_claim_size, n = num_claims)

set.seed(1234)

claims <- rexp(n = num_claims, rate = 1 / average_claim_size)

This time, you should not have seen any changes to the claims object. In fact, you
should get exactly the same numbers that I do! We have begun to create a program
which is reproducibly random and this is a very good thing. This means that I can
conduct research based on random simulations and someone else can check my work.
We are guaranteed to get the same values even when using simulation.

Back to function arguments. Every argument has a name, but we are not required to use
them. If I do not supply argument names, then R will assume that they have been
passed in the same order as is defined in the function. If you want to know what that
definition is, simply lookup the help for that function as described in Chapter 1. You can
also glean some information by using the function formals(). This is a function which
uses a function as an argument, i.e. formals(rexp). Go ahead and give it a try. It
exists, but I rarely use it.

When you look up the help, you will also notice that some arguments show a value
assigned in the “Usage” section of the help file, as shown in Figure 2.1. This is a default
argument, which means that if I like a value of 1, I am not required to pass in any value
at all.

claims <- rexp(n = num_claims)

That’s not what I want in this case. However, let’s go ahead and call the function with
the arguments unnamed, in their expected order, and not assuming any defaults. We will
also set the seed so that your results will look the same as mine.
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Figure 2.1: The help page for rexp

set.seed(1234)

claims <- rexp(num_claims, 1 / average_claim_size)

We now have ten thousand simulations of an exponential distribution. Do you want one
million? That only takes three lines of code (or two if you don’t reset the seed).

num_claims <- 1e6

set.seed(1234)

claims <- rexp(num_claims, 1 / average_claim_size)

A quick aside to talk about the parameterization. I am accustomed to thinking of the
exponential parameter as being equal to the mean. R does not define it this way. Happily,
the help file will make this clear, but you want to make sure that your understanding of
a function definition is aligned with R. In this case, we can make an easy transformation.

But how do we know that this simulated data represents what we want? We will start
with two quick checks.

summary(claims)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0 1440 3468 5001 6943 71016

The summary() function will return the min, max, median, mean and 1st and 3rd
quartiles of a set of values. Quickly note that summary() is another function which
takes a set of values as an argument. Also, rather than returning just one value, it
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returns several. The mean 5001.318 is very close to our value of 5000, so the random
sample appears to be sensible.

We may also like to check things visually. hist() is a function which won’t return any
value at all. Instead, it will create a plot, which displays in the Plots tab.

hist(claims)
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The picture is not publication quality, but it tells us all that we need to know for now.
The data definitely seem exponentially distributed.

We can get a slightly better look at the results by applying a log transform before
creating the histogram.

hist(log(claims))
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2.1 Exploring the exponential distribution

You have just finished your first stochastic simulation in R. It may have been fairly
simple, but complicated is not that far away. Before we go any further, let’s revisit the
help page for rexp(). You will have noticed that there are several other functions listed
there. These are dexp(), pexp() and qexp(). All of them will provide values related to
the exponential distribution. Let’s talk about dexp() first. Our exploration of this
function will lead us to creating a function of our own.

dexp() will generate values from the density function. Recall that this is
f (x) = rate ∗ e−rate∗x . I prefer to think in terms of „, which would correspond to the

value we have given to average claim size. That density function is f (x) = ex=„

„ . For a
continuous distribution, individual values of the density function are not very interesting.
Here are results for one, five and ten thousand.

dexp(1e3, 1 / average_claim_size)

#> [1] 0.000164

dexp(5e3, 1 / average_claim_size)

#> [1] 7.36e-05

dexp(10e3, 1 / average_claim_size)

#> [1] 2.71e-05

As we can see, everything is less than .0002. Note that calling the function three times
feels cumbersome. We had to type a lot of the same information over again, but the
only thing which changed was the x value for the function. Just as the summary()

function accepts more than value as an input, we may also pass more than one x value
for dexp(). We do this by wrapping the three values in a very useful function called,
simply, c(). This is short for combine.

dexp(c(1e3, 5e3, 10e3), 1 / average_claim_size)

#> [1] 1.64e-04 7.36e-05 2.71e-05

We can observe two things here. First, multiple function arguments produce multiple
function outputs. Second, we can immediately pass the results from one function as an
input to another function. c() was evaluated and its results were passed into dexp().
This is probably something you’ve done often when coding a function for a spreadsheet.
Both of these properties will be very useful to us throughout this text.

Even though the individual results for dexp() are not that interesting, it would be great
to use the density function to draw a picture, just as we did with the call to hist().
There are several strategies for this. For now, we will take a very straightforward one, in
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which we create multiple inputs — as we just did in the last code block — and then use
them to generate multiple outputs. Finally, we will create a simple X-Y scatter plots of
those two sets of values.

The first step will require us to think a bit about how to construct the values for the
x-axis. Have another look at the histogram we created earlier. Note that the axis marks
do not go further than three thousand, so we will use this as our upper bound. We also
know that the exponential distribution has a lower bound at x = 0. An easy way to get
an evenly spaced set of values between those bounds is the seq() function. Here seq()

is short for sequence. We will pass in the lower and upper bounds as named arguments,
and a value of 5 thousand in the length.out parameter as the number of x values we
would like to have returned.

x_values <- seq(from = 0, to = 3e3, length.out = 5e3)

Calculation of the y-values is similar to the call we made earlier when we passed in three
different values for x. Now, instead of using the c() function, we can simply pass in the
x values object which we created.

y_values <- dexp(x_values, rate = 1 / average_claim_size)

If you look in the Environment tab, you can see that the objects x values and
y values appear and each has 5 thousand values. (We can infer this by noting the
numbers in brackets, [1:5000].) We are now ready to create a picture of the
distribution. Whereas earlier we used the hist() function, now we will use the plot()

function. As its name would suggest, this is a fairly generic function. Its default behavior
is to construct a scatter plot based on two sets of values.

plot(x_values, y_values)
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This looks quite a lot like a straight line and not as much like an exponential distribution
as I would like to see. Perhaps this is because we have set the upper bound too low? We
can quickly generate a new plot with a wider range of x values. We will simply repeat the
three steps we carried out earlier, but with a different upper bound for the x values. To
save a bit of typing, I will not repeat the names of the function arguments. Remember
that I can do this, so long as I’m passing the arguments in in the proper order.

x_values <- seq(0, 10e3, length.out = 5e3)

y_values <- dexp(x_values, 1 / average_claim_size)

plot(x_values, y_values)
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2.2 Writing your first function

That looks a little bit better. Notice that we had to repeat the same line of code to
recreate the y values. If you are familiar with the way that spreadsheets automatically
recalculate, this may seem cumbersome. However, this is wholly consistent with the way
that R works. A value is assigned to an object. Objects do not take references to other
objects as they do in a spreadsheet. This is OK. If multiple objects need to be updated
at the same time, we simply have to ensure that we do so. One of the most fundamental
ways that we do this is by creating functions.

We have already seen some functions, but now we would like to create one of our own.
A function is like a recipe, where we provide a set of ingredients and the function will
follow the recipe to produce a result. The outcome may be different, depending on the
ingredients, but the steps that are followed will be the same every time.

plot_exponential <- function(mean, upper_x){
x_values <- seq(0, upper_x, length.out = 500)

y_values <- dexp(x_values, 1 / mean)
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plot(x_values, y_values)

}

Notice that we are using the same <- symbol to assign a value to the object named
plot exponential2. This is because a function is also an object. For clarity, in this
text, I will refer to functions by their name followed by parentheses, like plot() or
seq(). The parentheses serve as a reminder that the object is a function. This is one of
the only times where I will not do that. This is to emphasize the idea that a function is
an object in the same way that things like average claim size, x values and others
are objects.

Even though it is an object, the value of a function is different from the objects we have
encountered so far. The value for a function is an expression, which is basically a set of
instructions. In this case, the instructions are simply the three lines that we executed
earlier to display a probability density plot.

Let’s see this in action. I will use an upper bound that is higher than one we have used
so far. You should experiment with various values for the upper bound, including the
ones we have already used. If the plots do not look the same, there is probably an error
in your code which needs to be fixed.

plot_exponential(average_claim_size, 50e3)
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Defining a function means that we no longer have to worry about whether we have
updated the y values. They will be changed based on the arguments that we provide to
the function. As an additional benefit, I am not limited to the average claim size that we
started with. Look again at our function definition and notice that we named the first
parameter “mean”, rather than “average claim size”. This was deliberate. The

2Calling our function with an upper bound of 50 thousand gives a picture that reminds me of the
exponential distributions I’ve seen in textbooks.
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exponential distribution can model many different things; “wait time” should be an item
which actuaries think of. We can easily call our function with arguments as shown below.

plot_exponential(10, 50)
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Spend a bit of time calling this function with various arguments and observing the
results. R is meant to be a great, big sandbox for you to play in. Start getting your
hands dirty!

2.3 More probability functions

Having gotten a deeper feel for the density function of the exponential distribution, let’s
return to the other functions that we saw listed on the help page. First is the pexp()

function which will give us the cumulative distribution. This has some immediate
applications. In our case, we know that the average claim size is five thousand. If claims
follow an exponential distribution, what is the probability that a claim will be more than
twice its mean? With pexp() this is easy to calculate. The cumulative distribution will
give us the probability that a value is less than or equal to X, so the probability that a
value is higher than X is simply one minus that value. Or . . .

1 - pexp(2 * average_claim_size, 1 / average_claim_size)

#> [1] 0.135

That’s just under 14%. If I want to know probabilities that a claim is greater than one,
two or three times the mean, I can use the c() function as before.

1 - pexp(c(1, 2, 3) * average_claim_size, 1 / average_claim_size)

#> [1] 0.3679 0.1353 0.0498
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Again, the output of c() is immediately available as an input to pexp(). Note that
whereas c(1, 2, 3) generates 3 values, multiplication by the scalar
average claim size will also generate 3 values. R will automatically replicate the
value for average claim size so that there are 3 values to multiply against the set of
integers 1, 2, and 3. We will have more to say about this in Chapter 5.

The method of generating integers feels like it should be easier. Surely there will be
many times when I simply want a set of integers. It was easy when I only needed three,
but what if I had needed three hundred? Earlier, we saw that the seq() function could
accomplish that. Should we use it for a sequence of integers?

The answer is yes and no. We can use the : operator to generate a sequence of integers.
The seq() function could do this as well, but : is more common. It will simply produce
integers between its first and second values.

1 - pexp(1:3 * average_claim_size, 1 / average_claim_size)

#> [1] 0.3679 0.1353 0.0498

There is about a five percent chance that any given claim will be three times the mean.
That feels significant. Should we buy per occurrence excess reinsurance? The broker is on
the phone and wants to know what we think of a treaty which attaches at 25 thousand
for a limit of 50 thousand. How much loss would we cede under a treaty like that?

pexp(c(25e3, 75e3), 1 / average_claim_size)

#> [1] 0.993 1.000

This would cover less than 1% of our losses. Granted, there is some risk management
value in doing this, but we’d like to offer a different structure to the broker. What if we
wanted to cede all losses between the 95th and 99th percentile? What would be the
attachment and limit of such a treaty? To answer that, we will need the qexp()

function.

qexp(c(.95, .99), 1 / average_claim_size)

#> [1] 14979 23026

No actuary will give numbers like that to a broker. To make them easier to communicate,
let’s round them off to the nearest thousand. The round() function will handle this for
us. We will just need to store the results in an interim object first. Observe how using a
negative value for the digits argument will round to the left of the decimal point.
Passing in a value of negative three will round to the nearest thousand.
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treaty_limits <- qexp(c(.95, .99), 1 / average_claim_size)

round(treaty_limits, digits = -3)

#> [1] 15000 23000

The size of the layer may be a little unorthodox, but we can tweak that if we like. The
important point is that we can easily get answers anywhere on the distribution function.

At this point, you have mastered four functions which will generate meaningful values
for the exponential distribution. They are:

• rexp() — This will simulate values which come from an exponential distribution
• dexp() — This will calculate values of the density function for an exponential

distribution
• pexp() — This will give us the cumulative distribution
• qexp() — The inverse of dexp(). Input a cumulative probability and get back a

value for X

Four functions is a very great start, but I have some good news for you. You now know
more than four functions. You actually know more than a hundred. EVERY probability
function in R will follow this naming convention. Some of the parameters will obviously
be different, but ‘r’, ‘p’, ‘d’ and ‘q’ are all the same. Let’s look at a few.

The Poisson is another function with only one parameter. For a Poisson with – = 5,
what is the probability of observing a value equal to 2 or greater than 6? What value lies
at the 95th percentile? We can answer all three questions in just 3 lines of code.

dpois(2, 5)

#> [1] 0.0842

ppois(6, 5)

#> [1] 0.762

qpois(0.95, 5)

#> [1] 9

This works just fine, but I’m bothered by typing in 5 more than once. It increases the
chance of operational risk and it’s less expressive. I’ve been using R for years, but I’d
have to look at the help to remember whether lambda is the first or second parameter.
The code below is preferred.

lambda <- 5

dpois(2, lambda)

#> [1] 0.0842
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ppois(6, lambda)

#> [1] 0.762

qpois(0.95, lambda)

#> [1] 9

The random number generator works the same way it did for the exponential
distribution. We will again nest the functions to generate a histogram.

hist(rpois(5e3, lambda))

Histogram of rpois(5000, lambda)

rpois(5000, lambda)
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Function nesting is a common practice, used in many programming languages and
spreadsheets. That’s why I’m using it in this introductory chapter, but in Chapter 4, I
will switch to the pipe operator, written as %>%. This is my preferred approach, but
either will work.

The probability functions included in the stats package (which automatically loads
with every R session) are given in Table 2.1. In the tables, note that the asterisk
indicates a placeholder for one of the four probability functions:

1. r - Random number generation
2. d - Probability density or probability mass function
3. p - Cumulative distribution
4. q - Inverse cumulative distribution
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Table 2.1: Probability functions in R

Distribution Abbreviation

beta *beta()

binomial *binom()

Cauchy *cauchy()

chi-squared *chisq()

exponential *vexp()

Fisher F *f()

gamma *gamma()

geometric *geom()

hypergeometric *hyper()

logistic *logis()

lognormal *lnorm()

negative binomial *nbinom()

normal *norm()

Poisson *pois()

Student t *t()

uniform *unif()

Weibull *weibull()

The actuar package extends this list with the functions shown in Table 2.2.
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Table 2.2: More probability functions from actuar

Distribution Abbreviation

transformed beta *trbeta()

Burr *burr()

loglogistic *llogis()

paralogistic *paralogis()

generalized Pareto *genpareto()

Pareto *pareto()

inverse Burr *invburr()

inverse Pareto *invpareto()

inverse paralogistic *invparalogis()

transformed gamma *trgamma()

inverse transformed gamma *invtrgamma()

inverse gamma *invgamma()

inverse Weibull *invweibull()

inverse exponential *invexp()

loggamma *lgamma()

gumbel *gumbel()

inverse Gaussian *invgauss()

single parameter Pareto *pareto1()

generalized beta *genbeta()
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The Tweedie distribution

In addition to the army of probability functions we have available to us in Tables 2.1 and
2.2, there is an additional distribution, which we will use. The Tweedie [Tweedie, 1984]
has found increasing use in actuarial applications, as seen in [Taylor, 2009] and [Frees
et al., 2011]. A member of the exponential dispersion family, it is closely related to
generalized linear models which we will explore in Chapter 15. The function may also be
considered a compound Poisson-Gamma process, wherein we observe N Poisson
distributed variables, each of which follows a gamma distribution. This is a classic
collective risk model, in which the claim frequency and claim severity of a policyholder
or portfolio are modeled separately.

Following [Meyers, 2009], we may express the parameters of the Tweedie as follows. The
expected claim frequency is given by –, the total amount of expected loss is given by —.
Recall that the expected value of a gamma is equal to ¸ ∗ „. This is the expected value
of a single claim.

p =
¸+ 2

¸+ 1
(2.1)

— = – ∗ ¸ ∗ „ (2.2)

ffi =
–1−p ∗ (¸ ∗ „)2−p

2− p (2.3)

With these equations, we can easily calculate the parameters for a Tweedie. In the code
below, think of the claim amounts being expressed in thousands of dollars.

lambda <- 2

alpha <- 50

theta <- 0.2

p <- (alpha + 2) / (alpha + 1)

mu <- lambda * alpha * theta

phi <- lambda ^ (1 - p) * (alpha * theta) ^ (2 - p)

phi <- phi / (2 - p)

Notice that we break the calculation of phi into two steps. There are a lot of
parentheses going on there and it’s easy to something out of order. Breaking the logic
into smaller steps makes the code easier to read and debug.
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To use the Tweedie distribution, you will need the tweedie package. We will load this
in and simulate some values. Notice the apparent redundancy of associating the mu

parameter of the function with the mu object we just created. When processing a
fraction, R will handle these two labels separately and correctly.

library(tweedie)

set.seed(1234)

tweeds <- rtweedie(1e3, mu = mu, phi = phi, power = p)

summary(tweeds)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.0 9.7 19.3 20.4 29.5 77.8

When creating the histogram, I will break the bins using a sequence of integers from 0
through 80 using the breaks parameter. I know the exact sequence to use in this case
based on the “Max.” output from the call to summary().

hist(tweeds, breaks = 0:78)

Histogram of tweeds

tweeds

F
re

qu
en

cy

0 20 40 60 80

0
40

80
12

0

Figure 2.2: Simulated values from the Tweedie distribution

In Figure 2.2, notice the probability mass at zero. Also, notice the spikes near multiples
of 10. The expected claim amount is equal to ¸ ∗ „. For our example, this is 10. So, the
first cluster represents those policyholders who experience only one claim, each of which
will have a value around 10. For policyholders with two claims, the expected value will
be 20, but the variability around that amount will increase.
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2.4 A more complicated simulation

When we started, we used a fixed value for the number of claims. Now, let’s fix the
number of policyholders and generate a random number of claims for each of them. We
will use the Poisson distribution for this. Again, we will reset the random number seed to
ensure that the results you see are the same as the ones I see.

num_policies <- 1e3

set.seed(1234)

num_claims <- rpois(num_policies, 2)

The sample() function will generate a random sample of discrete items. Below, we
randomize the names of the months. If we would like more than 12 values, we may
increase the size parameter. When we do this, we will need to set the replace

parameter to TRUE in order to sample with replacement.

set.seed(1234)

sample(month.name)

#> [1] "December" "October" "June" "May" "April"

#> [6] "July" "January" "September" "February" "August"

#> [11] "November" "March"

sample(month.name, size = 20, replace = TRUE)

#> [1] "October" "June" "April" "August" "April" "April"

#> [7] "May" "August" "April" "August" "March" "April"

#> [13] "October" "May" "February" "August" "November" "April"

#> [19] "December" "March"

To create a weighted sample, we may alter the prob argument. Below, we will flip a
biased coin, where “tails” are twice as likely as heads. Notice that I don’t have to
normalize the probability amounts. We may simply enter relative sizes.

sample(c('Heads', 'Tails'), size = 20, prob = c(1, 2),

replace = TRUE)

#> [1] "Heads" "Tails" "Tails" "Heads" "Tails" "Tails" "Heads" "Tails"

#> [9] "Tails" "Tails" "Tails" "Heads" "Tails" "Heads" "Heads" "Tails"

#> [17] "Tails" "Tails" "Tails" "Heads"
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In future chapters we will extend this simulation to generate data which shares
characteristics of insurance claims. It will include information on policy effective and
expiration dates and premium. You already have most of the tools you will need to do
this. However, there are some foundational language and data elements that we will
need first. That’s coming up next.
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Chapter 2 Exercises

1. Change our function plot exponental() so that it does not take a fixed upper
bound as an argument. Instead, have the upper bound be a function of:

• the mean
• the distribution function

2. Given a portfolio of 10,000 policies, each of which has a probability of 0.98 of
going loss free:

• What is the probability that 200 or more policies will have at least one claim?
• What is the probability that exactly 200 will have at least one claim?
• What is the probability that only 10 policies will experience a loss?
• Create 10,000 simulated policy periods. What is the maximum and minimum

number of policies to experience a claim? What is the median of the
simulated output?

3. Carry on with the assumptions from above. Additionally assume that at the end of
the policy period, 400 policyholders have experienced a claim.

• What is the probability of that happening?
• If the loss-free probability were 0.97 what is the probability of that

happening?
• Create a vector which shows the probability of the event that 250

policyholders experience a claim. Assume loss-free probabilities in the range
of 0.90 to 0.99 in increments of 0.005.

4. Assume a lognormal distribution with a mean of 10,000 and a CV of 30%.

• For that distribution, what is the probability of seeing a claim greater than
$10,000? greater than 50,000? greater than 100,000?

• Generate two samples from that distribution. The first should have 100
elements and the second should have 1,000.

• What are the mean, standard deviation and CV of each sample?

5. Repeat the exercise above for a gamma distribution.
6. Simulate one hundred values from a Tweedie distribution with ¸ and „ parameters

of 50 and 0.2 respectively. For –, use values of 2, 5, 10, 50 and 100. Plot a
histogram of the results.

7. Create a function to plot the results for the previous question, as was done for the
exponential distribution.
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Tree-based models

The models we have looked at so far will perform very well when there is a linear
relationship between a response and a set of predictors. They can even go beyond that.
By transforming the response and/or the predictors, we can capture a wide range of
scenarios. However, there is one kind of scenario which they do not handle very well.
Run the code in the block below and then have a look at Figure 17.1.

library(tidyverse)

library(magrittr)

sims <- 250

set.seed(1234)

tbl_tree <- tibble(

x_1 = runif(sims, 0, 10)

, x_2 = runif(sims, 0, 10)

, y = case_when(

x_1 < 5 & x_2 < 4 ~ rnorm(sims, 7, 4)

, x_1 < 5 ~ rnorm(sims, -8, 4)

, x_1 >= 5 & x_2 < 2 ~ rnorm(sims, 50, 10)

, TRUE ~ rnorm(sims)

)

)

17.1 Continuous response

Figure 17.1 shows observations plotted in the two-dimensional predictor space with each
point showing variation in y by shape and color. We can see that the lower right corner
has large values of y and the upper left corner has smaller ones.

tbl_tree %>%

ggplot(aes(x_1, x_2)) +

geom_point(aes(size = y, color = y))
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Figure 17.1: How could we model this with a linear model?

Figure 17.2 shows y plotted against x1 and x2 separately. In each case, there is a region
below y = 25 which looks like it would fit with an intercept only model, but the
variance of the response is heteroskedastic. Moreover, this heteroskedasticity has — at
least for x1 — two distinct regions, with no smooth transition between them. Finally,
the values for y > 25 are white noise for two distinct regions of x1 and x2.

tbl_tree %>%

pivot_longer(-y, names_to = 'variable') %>%

ggplot(aes(value, y)) +

geom_point() +

facet_wrap(~variable)
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Figure 17.2: The response against each predictor
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Any attempt at capturing this dynamic with a linear model will force us to splice the
predictor space before we fit. Go ahead and try it (no, really!), but we will find this is a
cumbersome process and that any model we develop will not tell us much more than we
discovered via the process of splicing x1 and x2. So why not focus on all of the benefit
that we get from splicing the predictor space? This is — among other things — exactly
what a decision tree does.

We know from construction that our sample data is an amalgam of four distinct
responses, each of which have the same mean. Another way of phrasing that is to say
that we could divide Figure 17.1 into four rectangular regions such that the homogeneity
of each one is maximized. That’s the 2-D interpretation. In one dimension, we would
divide the predictor into distinct line segments. In three dimensions, the regions would
be right rectangular prisms and anything higher of higher dimension is simply a
hyperrectangle.

So, that’s the geometry. To gauge homogeneity, we will take the mean response within
the region as our prediction. We will then use the sum of squared errors (SSE) between
the predictor and the actual response as our homogeneity measure. The homogeneity of
our model is simply the sum of the SSE of each region. Note that in talking about the
metric in this way we are saying that homogeneity is maximized when total model SSE
is minimized. We can capture this with the slightly hacky Equation (17.1).

SSEmodel =

allreg ionsX
j

X
i∈regionj

(yi − ŷj)2 (17.1)

In Equation (17.1), note that the estimate, ŷj for region j is simply the average of the
response in that region as shown in Equation (17.2).

ŷj =
X

i∈regionj

yi=Nj (17.2)

Our model is constructed step by step, one predictor and one region at a time. At each
stage, we take each predictor and explore all of the potential split points for that
predictor. At each point, we calculate the SSE which would result by splitting at that
point. Note that we only need to know about the SSE for the two new potential regions
in question, not the overall SSE shown in Equation (17.1). Why? Because we will only
split if the two subregions improve the SSE for their overall region. All of the areas are
disjoint, so we are free to divide one, knowing that it will not have an impact on any of
the other regions. The code below will do this.
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calc_sse_split <- function(split_point, predictor, response) {

predict_left <- mean(response[predictor <= split_point])

predict_right <- mean(response[predictor > split_point])

ifelse(

predictor <= split_point

, response - predict_left

, response - predict_right

) %>%

raise_to_power(2) %>%

sum()

}

We can experiment with this for a few easy examples. You should try these out by hand
to check that the results make sense.

calc_sse_split(2, 1:5, c(1,2,1,3,4))

#> [1] 5.17

calc_sse_split(3, 1:5, c(1,2,1,3,4))

#> [1] 1.17

Note that our function is not vectorized for split point. The code below will generate
a single answer along with several warnings.

calc_sse_split(2:3, 1:5, c(1,2,1,3,4))

#> Warning in predictor <= split_point: longer object length is not

#> a multiple of shorter object length

#> Warning in predictor > split_point: longer object length is not

#> a multiple of shorter object length

#> Warning in predictor <= split_point: longer object length is not

#> a multiple of shorter object length

#> [1] 5.17

The fact that split point is not vectorized makes a bit of sense. We want to be able
to pass in a vector of any potential length and it will not necessarily be the same size as
the predictors and responses. If it’s of a different size than the predictor we will have
some confusing — and frankly unnecessary — overhead to work out the if statements.
The map dbl() function from purrr renders all of this moot. Recall that map *() will
call a function for each element in its first argument.
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map_dbl(2:3, calc_sse_split, 1:5, c(1,2,1,3,4))

#> [1] 5.17 1.17

With that function in place, we can measure the SSE at various split points for each of
our predictors.

tbl_tree <- tbl_tree %>%

mutate(

sse_x1 = map_dbl(x_1, calc_sse_split, x_1, y)

, sse_x2 = map_dbl(x_2, calc_sse_split, x_2, y)

)

As we see in Figure 17.3, the SSE decreases along the x-axis until about x = 5, where it
begins to increase. The line is very noisy, but we are not surprised by this. y has a fair
bit of variation in it.

tbl_tree %>%

ggplot(aes(x_1, sse_x1)) +

geom_line() +

scale_x_continuous(breaks = 1:10)
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Figure 17.3: SSE against x1
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We will see something similar when we observe x2. However, let’s plot both predictors at
the same time.

tbl_hach_predict %>%

ggplot(aes(index, value, color = as.factor(state))) +

geom_line(aes(linetype = model)) +

geom_point(aes(shape = model)) +

facet_wrap(~ state, scales = 'free_y') +

geom_smooth(method = 'lm', formula = y ~ x, se = FALSE) +

geom_smooth(

method ='lm'

, formula = y ~ 1

, se = FALSE

, linetype = 'dashed'

)
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Figure 17.4: SSE for both predictors

In Figure 17.4, the dip at x1 = 5 is still there, but the scale of change in x2 is much
more significant. Splitting my data here is the most efficient way to improve my
prediction. So what happens next? At this point, we split the data in two: one set
contains every observation having x2 ≤ 2 and the other every observation with x2 > 2.
We then split those two data sets into 3 or 4 and so on and so on.

We refer to each data set as a node. The first is known as the root or sometimes trunk
node. At the user’s discretion, we may opt to halt the process if the number of
observations within a node drops below a certain population. This node will be referred
to as a leaf or terminal node.
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You will be happy to know that you will not need to program this recursive algorithm.
(Although, give it a shot. It’s good practice and will help you appreciate the design
considerations that go into more widely used packages.) Two of the more popular
packages for fitting a decision tree are rpart and tree. They are broadly similar, but
we will focus on rpart, because it gives us a bit more control over the fit (which will
come in handy later). The function to fit a model looks very similar to lm() and glm().
It will take a formula object and a data frame as inputs.

library(rpart)

fit_tree <- rpart(

formula = y ~ x_1 + x_2

, data = tbl_tree

)

The prediction function is also similar to lm() and glm(). Simply pass in the fit object
and we will get back a vector of predictions. predict() has a few options for the type

argument which are relevant when the response is categorical.

tbl_tree <- tbl_tree %>%

mutate(

predict_tree = predict(fit_tree)

)

You will rarely hear the word ‘residual’ used in connection with decision trees, but it’s
straightforward to generate one. When we visualize it, we see that the decision tree has
partitioned our data such that we have five distinct predictions for y . We know, from
construction, that there are only four in the data1.

tbl_tree %>%

mutate(residual = y - predict_tree) %>%

ggplot(aes(predict_tree, residual)) +

geom_point()

1Re-examine the code at the beginning of the chapter if you are not sure how many different values for
the response to expect.
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Figure 17.5: Five distinct predictions

To get a sense for what’s behind this, we can plot the tree that we have produced. The
display is spartan, but will suit our purposes. Note that you will almost always call
text() immediately after calling plot()2. The plot is shown in Figure 17.6.

plot(fit_tree)

text(fit_tree)

|
x_2>=2.005

x_2>=4.033

x_1< 5.008

x_1< 4.988

−8 0.1
3

8 5e+01

Figure 17.6: Where our decision tree predicts

2I don’t know who would be satisfied with an unlabeled decision tree either.
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So, why do we have five leaf nodes rather than 4? The answer is that we split on
x2 >= 2 first. If we had split on x1 < 5, it would have consolidated the nodes shown at
3 and 8 in our model. This is a good illustration of the fact that a decision tree is a
greedy algorithm. If the algorithm had looked one or two steps ahead, it would have
recognized that SSE could be reduced further by splitting on x1 rather than x2 in the
first step. Largely for computational reasons it does not do this. Greediness is not often
an issue with decision trees. However, it illustrates that you must pay attention to the
output of your model and check it against what you know about your data. Later, we
will see a technique that may alleviate the effects of greediness.

17.2 Categorical responses

The algorithm we just implemented presumed that we have a continuous response. It is
straightforward to use the same approach for a categorical response; we simply need to
change how we measure homogeneity. Take a look at the vectors in the code snippet
below. For the numeric vectors, try to imagine which one has a higher SSE. Now have a
think about which character vector is more homogeneous. You may find it a bit easier to
form that guess when looking at the character data.

nums_1 <- c(1, 1, 2, 3, 3, 3)

nums_2 <- c(1, 2, 3, 3, 3, 3)

cats_1 <- c('jaguar', 'jaguar', 'tiger', 'lynx', 'lynx', 'lynx')

cats_2 <- c('jaguar', 'tiger', 'lynx', 'lynx', 'lynx', 'lynx')

Having done that, let’s look at three different mathematical definitions of homogeneity
for categorical data. In each of the equations which follow, p̂k measures — for a given
region j — the percentage of observations in category k , as in Equation (17.3). Also, for
each expression, a lower value indicates greater homogeneity.

p̂k =
X
i∈k

=
X
i∈j

= Nk=Nj (17.3)

1. The classification error rate reflects the portion of observations which are not in
the plurality class. This is measured simply as the complement to the portion of
observations in that class, as in Equation (17.4). We can see that we achieve a
lower value for this measure when one particular class dominates, that is, when its
probability is close to 1.

CER = 1−max
k

(p̂k) (17.4)
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2. The Gini index for a single category is equal to the probability of that category
times the complement of probability. Again, if one class is predominant, it will
drive the overall measure lower because of the presence of 1− p̂k . For a region
with only two classes, the Gini index is maximized when p̂k = 0:5. In this instance,
it is just as likely as not that an observation is a member of either class.

Gini =
X
k

p̂k (1− p̂k) (17.5)

3. The entropy is structurally very similar to the Gini measure. However, instead of
multiplying by the complement of probability, we multiply by the log of the
category’s probability. Because the log will generate a negative number — p̂k < 0
— we negate the sum. The concept of entropy comes to us from information
theory. Consequently, you will often see the term “information” or “information
gain”3 used to refer to the quantity defined in Equation (17.6).

Entropy = −
X
k

p̂k ∗ log (p̂k) (17.6)

Let’s see how each of those measures responds to the simple categorical variables we
created earlier. First, we will write a very simple function to compute the probabilities
for each class.

class_probs <- function(x) {
table(x) / length(x)

}

cats_1 %>% class_probs()

#> x

#> jaguar lynx tiger

#> 0.333 0.500 0.167

cats_2 %>% class_probs()

#> x

#> jaguar lynx tiger

#> 0.167 0.667 0.167

That done, we can explore the classification error rate:

3Note that “information gain” will more specifically refer to the difference in information before and
after a split.
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calc_class_error <- function(x) {
max_prob <- x %>%

class_probs() %>%

max()

1 - max_prob

}

cats_1 %>% calc_class_error()

#> [1] 0.5

cats_2 %>% calc_class_error()

#> [1] 0.333

The Gini index:

calc_gini <- function(x) {
probs <- x %>%

class_probs()

(1 - probs) %>%

multiply_by(probs) %>%

sum()

}

cats_1 %>% calc_gini()

#> [1] 0.611

cats_2 %>% calc_gini()

#> [1] 0.5

And the entropy:

calc_entropy <- function(x) {
probs <- x %>%

class_probs()

probs %>%

log() %>%

multiply_by(probs) %>%

sum() %>%
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multiply_by(-1)

}

cats_1 %>% calc_entropy()

#> [1] 1.01

cats_2 %>% calc_entropy()

#> [1] 0.868

No matter what measure we use, we see that cats 2 is always the more homogeneous
of the two vectors. Hopefully that squares with your intuition. A natural question arises
as to which measure is more useful in practice. [James et al., 2017] states that the
classification error rate is not always the must useful at partitioning our data. However,
there is scant guidance as to the circumstances when Gini is to be preferred to entropy.
[Raileanu and Stoffel, 2004] have conducted research which suggests that there is little
reason to prefer one to the other. In the examples which follow, we will use the default
in rpart(), which is Gini.

Let’s add a categorical column to our sample data. We will simply examine the sample
values of y and use case when() to categorize them. We will also calculate the Gini
and the entropy for the categorical response.

tbl_tree <- tbl_tree %>%

mutate(

y_cat = case_when(

y > 25 ~ 'tiger'

, y < 0 ~ 'lynx'

, y > 3 ~ 'jaguar'

, TRUE ~ 'bobcat'

)

)

calc_entropy(tbl_tree$y_cat)

#> [1] 1.21

calc_gini(tbl_tree$y_cat)

#> [1] 0.658

Just as we did with SSE, we will create a function to determine the homogeneity which
results after a split. In this case, though, we will make the measure argument a function
which we pass in. This allows us to use any of the three measures which we defined
earlier. Notice that the value across the entire response is a weighted average of the two
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sub-vectors, after the split. The weight is taken as the number of observations in each of
the sub-vectors.

calc_split_categorical <- function(

split_point

, predictor

, response

, measure) {

index_left <- predictor <= split_point

index_right <- predictor > split_point

measure_left <- response[index_left] %>%

measure()

measure_right <- response[index_right] %>%

measure()

(sum(index_left) * measure_left +

sum(index_right) * measure_right) %>%

divide_by(length(predictor))

}

Now, let’s measure the value of all the potential split points for each of our predictors.
We will get a warning in the classification error rate when we try to split at the maximum
value of x1 and x2. We can ignore this, but your code should be a bit more robust.

tbl_tree <- tbl_tree %>%

mutate(

class_error_x1 = map_dbl(

x_1

, calc_split_categorical

, x_1

, y_cat

, calc_class_error

)

, entropy_x1 = map_dbl(

x_1

, calc_split_categorical

, x_1
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, y_cat

, calc_entropy

)

, gini_x1 = map_dbl(

x_1

, calc_split_categorical

, x_1

, y_cat

, calc_gini

)

, class_error_x2 = map_dbl(

x_2

, calc_split_categorical

, x_2

, y_cat

, calc_class_error

)

, entropy_x2 = map_dbl(

x_2

, calc_split_categorical

, x_2

, y_cat

, calc_entropy

)

, gini_x2 = map_dbl(

x_2

, calc_split_categorical

, x_2

, y_cat

, calc_gini

)

)

#> Warning in max(.): no non-missing arguments to max;

#> returning -Inf

As we did with a continuous response, we may compare the two predictors on the basis
of one of our measures to see which one we would split first. The results are displayed in
Figure 17.7.
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tbl_tree %>%

ggplot() +

geom_line(aes(x_1, entropy_x1)) +

geom_line(aes(x_2, entropy_x2), linetype = 'dashed') +

labs(x = 'x', y = 'entropy')
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Figure 17.7: x1 and x2 for the categorical response

On the basis of entropy, we would again split at x2 first. Would another measure have
lead us to a different conclusion? Let’s compare all three measures for x2. First, we will
construct a data frame which gathers the three measures and forms a column to identify
them. That column will make the plotting easier4. Figure 17.8 shows us that the
conclusion is more or less the same.

tbl_x2_measures <- tbl_tree %>%

select(x_2, gini_x2, entropy_x2, class_error_x2) %>%

pivot_longer(-x_2, names_to = 'measure') %>%

mutate(measure = gsub('_x2', '', measure))

tbl_x2_measures %>%

ggplot(aes(x_2, value)) +

geom_line() +

facet_wrap(~measure, scales = 'free')

4You could also do the pivot longer() and mutate() before passing the result into ggplot(). I’m
splitting them into distinct steps in hopes that it makes the exposition smoother.
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Figure 17.8: How the different measures compare for x2

For a complete tree, we may again use rpart(), with exactly the same function
interface. The default measure is Gini. If we like, we may choose to use entropy by
passing in an option to the parms argument. This is shown in the second call in the
code block below.

fit_rpart_gini <- rpart(

data = tbl_tree

, formula = y_cat ~ x_1 + x_2

)

fit_rpart_info <- rpart(

data = tbl_tree

, formula = y_cat ~ x_1 + x_2

, parms = list(split = 'information')

)

For a categorical variable, the prediction will be the category which appears most often
in that region. However, rpart provides several other options as well. The default will
return a matrix showing the probability for every categorical response. For example:

predict(fit_rpart_gini) %>%

head(2)

#> bobcat jaguar lynx tiger

#> 1 0.013 0 0.987 0

#> 2 0.760 0 0.240 0
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To return the prediction as a vector which matches the response, specify type =

'class'.

predict(fit_rpart_gini, type = 'class') %>%

head(2)

#> 1 2

#> lynx bobcat

#> Levels: bobcat jaguar lynx tiger

tbl_tree <- tbl_tree %>%

mutate(predict_cat = predict(fit_rpart_gini, type = 'class'))

Because categorical responses are non-numeric, the concept of a residual does not really
apply. Even if we were to map predictions and observations to a set of integers, it would
not be terribly enlightening. For each observation, the prediction either matches exactly,
or it does not match at all. In other words, every “residual” is either 1 or 0.

Instead, we summarize the results for the model as a whole. We can capture this as a
single statistic, called the accuracy, which is simply the number of correct predictions
divided by the sample size. Though helpful, it is worthwhile to inspect where the model
is and is not accurate. Results by class are easy to obtain and are shown in Table 17.1.

tbl_cat_results <- tbl_tree %>%

mutate(

true_prediction = (predict_cat == y_cat)

, false_prediction = !true_prediction

) %>%

group_by(y_cat) %>%

summarise(

true_prediction_rate = sum(true_prediction) / n()

, false_prediction_rate = sum(false_prediction) / n()

)

Category True Prediction Rate False Prediction Rate

bobcat 71.9% 28.1%

jaguar 100.0% 0.0%

lynx 82.1% 17.9%

tiger 100.0% 0.0%

Table 17.1: Prediction accuracy by class
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The case where there are only two potential responses — analogous to a logistic
regression — has been well studied and has several diagnostic tools. We will talk about
some of them further in Chapter 19.

17.3 Bagging

The example we have used so far is very simple. For something more complex, we will
simulate some data using the caret package, about which we will have more to say in
Chapter 18. This will have several potential predictors, as well as some “noise” columns.

library(caret)

set.seed(1234)

tbl_tree_complex <- twoClassSim(

sims

, intercept = -5

, linearVars = 2

, noiseVars = 2

, corrVars = 3

, corrValue = 0.1)

Play around with that data for a bit. It’s purely simulated, but make some plots and see
if any structure suggests itself.

All done? Now we are going to fit a decision tree, but instead of fitting it to the entire
data set, we will construct a model using only half of our sample. We will then use that
model to try and predict the other half.

test_index <- sample(nrow(tbl_tree_complex), sims / 2)

tbl_tree_complex_train <- tbl_tree_complex[test_index, ]

tbl_tree_complex_test <- tbl_tree_complex[-test_index, ]

fit_tree_train <- rpart(

Class ~ .

, data = tbl_tree_complex_train

)
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We will create a short utility function to compute the accuracy of our model. Note the
use of enquo() so that we may flexibly pass in columns from our data frame within a
call to mutate(). We first saw this in Chapter 10.

test_tree <- function(tbl_in, actual, predicted) {
actual <- enquo(actual)

predicted <- enquo(predicted)

tbl_in %>%

mutate(accurate = !!predicted == !!actual) %>%

summarise(pct_accurate = sum(accurate) / n()) %>%

pull(pct_accurate)

}

Finally, we will compare the accuracy of our model prediction on the training set to the
prediction on the test set.

tbl_tree_complex_train %>%

mutate(predicted_class = predict(

fit_tree_train

, newdata = .

, type = 'class'

)) %>%

test_tree(Class, predicted_class)

#> [1] 0.904

tbl_tree_complex_test %>%

mutate(predicted_class = predict(

fit_tree_train

, newdata = .

, type = 'class'

)) %>%

test_tree(Class, predicted_class)

#> [1] 0.76

Although the model performs rather well on the data used to calibrate it, the
performance drops for out-of-sample data. This is surprising, because we know that both
data sets were formed from the same stochastic process. This is not a good thing. Most
of what actuaries do relates to out-of-sample data, that is, estimates about things which
will happen in the future. Predicting the past does not do us much good!
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This is a common challenge for a decision tree model. In this case, the decision tree is
too specific. Rather than capturing the broad stochastic process and variable
relationships in play, it has simply “memorized” the data used to fit it. One strategy to
overcome this is to “prune” the tree. To do so, one “cuts back” leaf nodes based on
some criteria. Another commonly used criteria is to penalize the measure of model fit by
the model complexity as determined by the number of leaf nodes.

Another way to address poor fit for out-of-sample data is to meet it head on. We failed
to predict the test data because we did not use it in our model. So, let’s use it. We
could fit each sample and then weight the results in our prediction. Below, we are using
the default version of predict() which returns a matrix of probabilities for each
observation for each class. We fetch only the first column, which will be the probability
for Class1.

fit_tree_test <- rpart(

Class ~ .

, data = tbl_tree_complex_test

)

tbl_tree_predict <- tbl_tree_complex %>%

mutate(

predict_train = predict(fit_tree_train, newdata = .)[, 1]

, predict_test = predict(fit_tree_test, newdata = .)[, 1]

, predict_mean_prob = (predict_train + predict_test) / 2

, predict_mean_class = ifelse(

predict_mean_prob > 0.5

, 'Class1'

, 'Class2'

)

)

With that, we can test the combination of two models on the training set, the test set
and all of our data5.

# training set

tbl_tree_predict %>%

slice(-test_index) %>%

test_tree(Class, predict_mean_class)

#> [1] 0.76

5In this instance, we are using the terms “training” and “test” set rather loosely, in order to facilitate a
comparison with our earlier example. We will get more precise definitions for these terms in Chapter 19.
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# test set

tbl_tree_predict %>%

slice(test_index) %>%

test_tree(Class, predict_mean_class)

#> [1] 0.904

# everything

tbl_tree_predict %>%

test_tree(Class, predict_mean_class)

#> [1] 0.832

The performance for the training set went down, but the performance on the test set
went up. The overall performance was somewhere in between. Taking the average of
“memorizing” two sets of data has some appeal. To get even better results, we can scale
up from two subsamples to many. We bootstrap a sample, fit a model and aggregate the
results. If this is the first time you’ve heard the word “bootstrap” in a statistical context,
here’s the definition in a nutshell: 1) take multiple samples — with replacement — from
a sample, 2) calculate some statistical measure, 3) average across all of the measures.
You can find more detail in [James et al., 2017].

This form of “bootstrap aggregation” is better known as “bagging”. One
implementation is found in the ipred package.

library(ipred)

fit_bag <- bagging(

Class ~ .

, data = tbl_tree_complex

, nbagg = 10

)

Bagging is our first example of an ensemble model. An ensemble model works from the
idea that a collection of many weak models will aggregate to a single model which
performs well. To me, this calls to mind the old cliche that “the whole is greater than
the sum of its parts”.

Because we are bootstrapping, we should be aware that the predictions themselves are
random. We may minimize the variability by running many trials. See the results below
for two models run with only ten samples each. The predictions are different between
them.
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set.seed(1234)

bagging(

Class ~ .

, data = tbl_tree_complex

, nbagg = 10

) %>%

predict() %>%

head()

#> [1] Class2 Class2 Class1 Class2 Class1 Class2

#> Levels: Class1 Class2

set.seed(5678)

bagging(

Class ~ .

, data = tbl_tree_complex

, nbagg = 10

) %>%

predict() %>%

head()

#> [1] Class2 Class2 Class2 Class2 Class2 Class1

#> Levels: Class1 Class2

One great benefit about bagging is that we automatically generate an estimate for how
a model will perform on out of sample data. Whenever we fit a decision tree on a
subsample, we can test its performance on all of the data which we did not use. That
data is referred to as “out of bag” or OOB. To capture the model error, we must
override the default for coob (calculate out of bag) by passing in coob = TRUE.

fit_bag_oob <- bagging(

Class ~ .

, data = tbl_tree_complex

, coob = TRUE

)

fit_bag_oob$err

#> [1] 0.192
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The complement of estimated error is the accuracy figure we calculated earlier with our
training and test sets. Using 25 trees (the default), we have 0.808. Using fewer trees will
decrease this amount, while increasing the number of trees might increase it. Why
might? Because there is a ceiling on just how accurate our models can be. In general,
there will always be some random variation which will cause our predictions to fail for
some observations.

Bagging is also a departure from simple decision trees in that there is no longer a simple
interpretation. Rather than following a sequence of logical propositions, we are
computing a prediction on the basis of the averages of many such sequences. In other
words, what does the prediction have to do with the various predictors?

This — and another improvement — is something we get from random forests.

17.4 Random Forests

With bagging, each time we are testing the same set of potential predictors on a random
subset of our original data. What’s wrong with this approach? In principal, not much.
However, consider this: if one, or a few, of the predictors works very well, then it will
work well in every bootstrapped tree. This will erode the independence between the
individual trees. Moreover, it could obscure the ability of other predictors to perform well
for certain areas of the response.

That brings us to random forests. Like bagging, a random forest will use a bootstrapped
subsample to fit a single decision tree. However, at each node it will use only a subset of
the potential predictors. This means that each tree in a random forest model will have
less in common with all of the others.

library(randomForest)

set.seed(1234)

fit_forest <- randomForest(

formula = Class ~ .

, data = tbl_tree_complex

)

How many trees are enough? The default is 500. We can gain a sense for how much
each additional tree improves our estimate by using the “out of bag” error concept,
which we first referenced in our discussion of bagging. The default plot function for the
randomForest package will display this, but I like the implementation from the
ggRandomForests package a bit better. That package has a number of methods which
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will extract information from a random forest. You must then convert it to a ggplot2

object with a call to plot(). Once that’s done, we may use all of the ggplot2 features
that we know and love.

library(ggRandomForests)

fit_forest %>%

ggRandomForests::gg_error() %>%

plot() +

geom_vline(xintercept = 70)
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Figure 17.9: OOB error improvement for a random forest model

As we see in Figure 17.9, the OOB error rate shows little improvement after 70 trees
have been used.

Earlier, we said that bagging does not provide us with an instant view of the relationship
between predictors and a response in the same way that a single decision tree does.
However, by examining all of the different trees used in the fit, we can get a feel for this.
The importance of a variable measures the average improvement in fit across all of the
models which were constructed. Again, remember that a variable is not necessarily
tested at each node.

The randomForest package uses two different measures for “improvement”. The first
examines the difference between the OOB error of the model and a measure of OOB
where each of the predictors has been randomly rearranged. That quantity is averaged
across all trees. The idea here is that when those two measures are similar, the model fit
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does not depend on a particular predictor. The second measure simply computes the
average of the total decrease in node heterogeneity for each predictor.

To retrieve both, we must override the default argument for importance when fitting
the model as follows:

fit_forest <- randomForest(

formula = Class ~.

, data = tbl_tree_complex

, importance = TRUE

)

The importance() function returns values as a matrix, an example of which is shown
in Table 17.2.

importance(fit_forest)

We may also plot the results with the varImpPlot() function, as in Figure 17.10.

varImpPlot(fit_forest, main = NULL, n.var = 10)

Class1 Class2 MeanDecreaseAccuracy MeanDecreaseGini

TwoFactor1 27.217 35.672 38.582 27.07

TwoFactor2 28.737 37.425 40.349 29.97

Linear1 -1.120 -1.652 -1.815 5.13

Linear2 6.479 6.756 8.730 10.03

Nonlinear1 1.530 5.282 4.638 8.36

Nonlinear2 -2.071 0.554 -1.047 6.74

Nonlinear3 -2.019 2.119 -0.168 6.38

Noise1 -1.664 -2.524 -2.938 4.82

Noise2 1.178 -1.880 -0.244 5.85

Corr1 0.521 -1.226 -0.427 6.55

Corr2 0.751 0.177 0.624 7.32

Corr3 -0.376 1.859 0.999 5.91

Table 17.2: Variable importance information



514 R for Actuaries and Data Scientists

Nonlinear2
Corr1
Noise2
Nonlinear3
Corr2
Corr3
Nonlinear1
Linear2
TwoFactor1
TwoFactor2

0 10 20 30 40
MeanDecreaseAccuracy

Noise2
Corr3
Nonlinear3
Corr1
Nonlinear2
Corr2
Nonlinear1
Linear2
TwoFactor1
TwoFactor2

0 5 15 25
MeanDecreaseGini

Figure 17.10: Visual display of variable importance

In each instance, we see that the variables TwoFactor1 and TwoFactor2 tend to be
most useful in making a prediction.

Variable importance is the start of the conversation about how to interpret an ensemble
model. Additionally, it is useful to see roughly where a predictor is important. A partial
dependency plot does this. For example, consider Figure 17.11.

partialPlot(

fit_forest

, pred.data = tbl_tree_complex

, x.var = 'TwoFactor2')
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Figure 17.11: Partial dependence plot for our complicated data

The scale of the y-axis of the plot is not shown and its construction is a bit involved6.

6For more detail, please refer to [Hastie et al., 2017].
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We take a set of points along the range of the predictor which we are interested in7. At
each point, we substitute that value for every cell for the predictor in our sample data
frame. We then predict using our model. That is, we hold a single predictor constant
and observe the central tendency of the prediction. For trees which use SSE, “central
tendency” is simply the mean of the response. For a classifier, we must specify which
class we are interested in observing. The “central tendency” is then the difference
between the log probability for the class of interest and the average log probability
across all classes. This is shown in Equation (17.7).

f (x) = log pk(x)− 1

K

KX
j=1

log pj(x) (17.7)

The idea here is that there will be particular places along the predictor space where the
predicted response changes. For example, cast your eye on Figure 17.12 (the code to
produce it appears after this paragraph). We can see that the curve increases sharply at
x1 = 5. This jives with what we know about the data. For a real-world application,
imagine being able to replace x1 = 5 with “risk-free interest rates > 3.5%”, or
“policyholder retention < 80%”. Risk-free interest rate or policyholder retention could be
one of a dozen, or several dozen variables in a model. They will not get a coefficient as
they would in a linear regression or a GLM, so their influence on the result is not as easy
to describe. A partial dependence plot helps to bridge that gap.
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Figure 17.12: A partial dependency plot for our simple tree data

7The default will be the number of unique values, but not more than 51.
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fit_forest_simple <- randomForest(

y ~ x_1 + x_2

, data = tbl_tree

)

partialPlot(

fit_forest_simple

, pred.data = tbl_tree %>% as.data.frame()

, x.var = 'x_1'

, n.pt = 50)

For more detail on how variable importance and partial dependency are calculated, the
interested reader is referred to [Hastie et al., 2017].

17.5 Boosting

Boosting is another approach to ensemble models. However, rather than fitting many
random decision trees and averaging across all of them, boosting works iteratively. The
idea is that we begin with a very simple model, which we do not expect to perform well.
We then observe where the fit is the worst and direct our next model to those areas of
our data. This continues until the change in our prediction is very small, or a maximum
number of iterations has been reached.

We can target the next model in the sequence in one of two ways. The first uses the
difference between the current estimate and the actual observation (i.e. the residual) as
the response term in a decision tree. The estimate is recursively adjusted by adding in
the latest predicted value from the decision tree. This is implemented in the gbm

package.

The second approach will continually adjust the weight which we assign to each
observation in our models. Those observations associated with particularly poor
predictions get more weight in the next iteration of the model. That’s the idea behind
the model found in the ada package.

gbm

We can think through this with our simple data set. In a moment, we will be adding
many new columns, so let’s create a fresh and streamlined version of our sample tree
data to store it. We will also initialize our prediction and residual.
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tbl_tree_boost <- tbl_tree %>%

select(y, x_1, x_2) %>%

mutate(

predict_0 = 0

, resid_0 = y - predict_0

)

Now let’s construct a function which will perform the iterative prediction. We don’t
need to do this — in a moment we will have a look at an R package which does this for
us. However, this is good practice. We will get a better feel for how the algorithm works
and we will continue to accumulate experience in function design and data structure.
And who knows? Maybe someone reading this will get inspired to design the next great
machine learning algorithm!

add_prediction <- function(

tbl_in

, n_iteration

, predictors

, max_depth = 1

, shrinkage = 0.05) {

# Ensure that the sequence has been initialized

if (n_iteration < 1) {
stop("n_iteration must be >= 1.")

}

# collapse will convert a vector of predictors into a single

# character string with each element separated by `+`

the_formula <- paste(predictors, collapse = '+') %>%

paste0('resid_', n_iteration - 1, ' ~ ', .) %>%

as.formula()

fit <- rpart(

the_formula

, data = tbl_in

, control = rpart.control(maxdepth = max_depth)

)

# This will pull the current and new prediction columns
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pred_cols <- paste0("predict_", c(n_iteration - 1, n_iteration))

# The new prediction is equal to the current +

# the predicted residual

tbl_in[[pred_cols[2]]] <- tbl_in[[pred_cols[1]]] +

shrinkage * predict(fit)

tbl_in[[paste0('resid_', n_iteration)]] <- tbl_in$y -

tbl_in[[pred_cols[2]]]

tbl_in

}

If you have read the code, with attention paid to the comments and you have typed it in
yourself, you are good to go. Two items, however, warrant a bit of attention. The first is
the shrinkage parameter. This is the rate at which our model evolves8. Setting it to a
low value means that we will move very slowly towards the next model estimate. This is
cautious, but means that we are less likely to respond to particularly significant bits of
noise in our data. We will need more iterations to arrive at a solution, so bear that in
mind.

The second item is the the max depth parameter. As with a low learning rate, this is
another way of keeping the model evolution process very simple and slow. max depth

will control the number of levels which we permit in the decision tree which we are using
to model the residuals. In the extreme, we may limit ourselves to only one split point,
giving us a “stump”. In our function, max depth is passed to the control parameter to
the rpart() function. That parameter is constructed by the rpart.control()

function. This allows us to tune a number of options like the number of observations
required for a split to be considered (minsplit), or the minimum number of
observations which must exist in a leaf node (minbucket).

And now we are ready to iterate! Attentive readers may be surprised to see a for loop
after the discussion in Chapter 4. It is true that we should prefer functions like map().
However, recall that one of the cases where we must use a for loop is when we want to
recursively perform an operation. That is what we are doing in this case.

for (i_iteration in seq_len(50)) {
tbl_tree_boost <- tbl_tree_boost %>%

add_prediction(i_iteration, c('x_1', 'x_2'))

}

8In fact, some models will refer to this parameter as the “learning rate”.
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We visualize the results by plotting our prediction and the actual value. In Figure 17.13,
we will show the actual observations as black, the final prediction as blue and the
prediction after five iterations as green. We can see that after 50 iterations, the results
form several sets where the final results are meaningfully distant from iteration ten. This
reflects the careful evolution of our prediction based on the default shrinkage of 0.05.

tbl_tree_boost %>%

pivot_longer(

c(x_1, x_2)

, names_to = 'pred_name'

, values_to = 'pred_val'

) %>%

ggplot(aes(pred_val)) +

geom_point(aes(y = predict_50), color = 'blue') +

geom_point(aes(y = predict_10), color = 'green') +

geom_point(aes(y = y)) +

facet_wrap(~ pred_name)
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Figure 17.13: How our boosting algorithm performs

We can get a feel for how the learning rate influences the outcome by overriding the
default shrinkage parameter with a value of 0.5. The code to do this is not shown. In
Figure 17.14, we see that iteration 50 is quite a bit closer to iteration 10. This is
because the algorithm is moving much faster. In addition, the straight lines which we
saw in Figure 17.13 show a bit more variation.

Which parameter do we prefer? This is a question which we will answer in Chapter 19.
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Figure 17.14: Our boosting algorithm with a higher learning rate

The process above is implemented in the package gbm, which is an abbreviation for
gradient boosting machine. We will apply it to our tbl tree complex data frame, but
first, we need to convert our Class variable from a factor to an integer. Moreover, we
must ensure that the values are either 0 or 1. This is a constraint imposed by the
algorithm in gbm. The code below will do this.

tbl_tree_complex_gbm <- tbl_tree_complex %>%

mutate(

Class = as.integer(Class)

, Class = Class - min(Class)

)

When running the model, we must specify how many trees to use. Two hundred will do
just fine here. In addition, it is a good idea to specify whether this is a classification or a
regression problem. If we do not pass in something for the distribution argument,
gbm() will make its best guess. In this case, it will assume “Bernoulli” because we have
only two values for the response.

library(gbm)

fit_gbm <- gbm(

Class ~ .

, data = tbl_tree_complex_gbm

, n.trees = 200

)

#> Distribution not specified, assuming bernoulli ...
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When predicting with gbm, we must also specify how many trees to use. The value must
be less than or equal to the number of trees used when constructing the model. Again,
the higher number would use the prediction from a higher iteration. Similar to glm(),
the default does not return predictions on the scale of the response, so we must override
the default type parameter. On the response scale, we do not get predicted classes.
Instead we get probabilities which we must to convert to classes.

fit_gbm %>%

predict(n.trees = 200, type = 'response') %>%

summary()

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.004 0.079 0.360 0.464 0.884 0.996

AdaBoost

The AdaBoost algorithm is an example of the second type of boosting method, that is,
one in which a simple decision tree has weights which constantly adjust to focus on
areas of the predictor space which don’t predict well.

library(ada)

fit_ada <- ada(

Class ~ .

, data = tbl_tree_complex

, iter = 70

)

The plot() function for an AdaBoost model object shows the error on the set which
was used to calibrate the model, as shown in Figure 17.15.

plot(fit_ada, tflag = FALSE)
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Figure 17.15: Training error for AdaBoost
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Of greater use will be a plot which shows the error for both training and test data sets.
To take advantage of this, let’s fit our model again, using only the training data set. We
then add the test data. When we do, we will have to pass it in as two separate pieces:
first the predictors, then the response. This is fairly typical and illustrates the use of two
different conventions in defining models in R. The first uses a formula and a complete
data frame to define the response and the predictors. This is the approach used by lm(),
glm() and many others. The other paradigm is to pass in variables typically labeled x

and y. This is used often for newer methods like tree-based models, neural networks and
the like.

Why the difference? I can only speculate, but here’s my take: machine learning methods
do not need variable relationships like interaction terms, intercepts and the like. Further,
many of them are ported from other programming environments like C++, which use
matrices to represent data. Many methods — like randomForest() — support both
function interfaces. Others — like xgboost — do not. Using one or the other is
straightforward, just be aware that there are instances when the formula argument
(which I very much prefer) will not be available.

fit_ada_both <- ada(

Class ~ .

, data = tbl_tree_complex_train) %>%

addtest(

test.x = tbl_tree_complex_test %>% select(-Class)

, test.y = tbl_tree_complex_test$Class

)

fit_ada_both %>%

plot(test = TRUE, tflag = FALSE)
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Figure 17.16: Training and test error for AdaBoost
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OK, back to the error in our test data. As we see in Figure 17.16, the error rate for the
training set continues to decline with each iteration. However, the error for the test set
is a good deal higher and declines at a slower pace.

The benefit of ensemble methods

Ensemble methods have an underlying estimation structure which is opaque and they
take longer to compute. So why use them? There are a few reasons:

1. They are often better at estimating results for out of sample data.
2. They may be tuned to be less “greedy” than a simple decision tree. They may not

be as likely to memorize quirks in the sample data.
3. Random forest methods have an innate defense against correlation across

predictors.

Data

Before we leave this chapter, I should pass on a couple quick notes about data.

Many of the tree-based methods — indeed many machine learning algorithms in general
— expect character data to be coded as a factor. Some (like xgboost) expect all inputs
to be numeric. This is not hard to arrange. The mutate if() function will scan all of
the columns of our data frame and test for a particular condition. The is.*() functions
which we first learned about way back in Chapter 3 are great candidates. Whenever the
condition is met, the second argument (a function) will be applied to the column. We
can also apply this change to logical columns. This will ensure that none of the
algorithms we are using will interpret a logical value as numeric. In other words, we want
to ensure its treatment as a qualitative variable.

tbl_tree_complex %>%

mutate_if(is.character, as.factor) %>%

mutate_if(is.logical, as.factor)

Many algorithms will not tolerate missing data. We have a choice here: we can eliminate
those observations from the model calibration, or we can replace NA with a value. The
first option is not desirable as it erodes the power of our model. The second option —
variable imputation — allows us to use all of our data. However, we must be cautious
about imputing when the true values are unknown (or even unknowable). There are
quite a few different algorithms to choose from. The vtreat package has very good
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support for this. The techniques it uses are non-trivial, so I will suggest reading more
about it in [Mount and Zumel, 2014].

An easier approach, which may be useful in situations where missing data is rare, is to
use the na.roughfix() function. This will replace missing values with the mean or the
mode, when the variable is continuous or categorical, respectively.

Below, we randomly insert some missing values in some of our linear predictors. Make
sure you understand the use of the mutate at() function and the random na()

function which we create.

random_na <- function(x, prob = .02) {
indices <- rbernoulli(length(x), prob)

x[indices] <- NA

x

}

tbl_tree_missing <- tbl_tree_complex %>%

mutate_at(

vars(starts_with('Linear'))

, random_na

)

fit <- randomForest(

Class ~ .

, data = tbl_tree_missing

)

#> Error in na.fail.default(structure(list(Class =

#> structure(c(2L, 1L, 2L, : missing values in object

Below, we impute values for cells where we are missing data. This will allow the
randomForest() algorithm to run. You should compare the two data frames to ensure
you understand how the imputation took place.

tbl_tree_missing_fixed <- tbl_tree_missing %>%

na.roughfix()

fit <- randomForest(

Class ~ .

, data = tbl_tree_missing_fixed

)
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I will again emphasize that variable imputation is not something to be done lightly.
There may be operational or market reasons which will account for missingness in data.
For instance, is there rating information that was not collected historically? In this case,
you should consider whether and how historical data points can contribute to a model.
Rather than imputation, it could make more sense to replace the NAs with a signal
value which will segment your data and may be directly modeled. Use of a signal is
obviously much easier to do if that predictor in question is categorical.

We will have more to say about this in Chapter 18

The forest and the trees

Decision trees have some appealing features. For one, they appear analogous to the
process a human goes through when processing information. For example, “Write this
risk if revenues are greater than $X, but only if loss experience is less than $Y, but loss
experience may be acceptable if they have recently implemented a risk management
program”. This makes fairly basic decision trees easy to explain to decision makers.

Another way in which they have some appeal is in their treatment of potential predictor
variables. For linear models, we must specify which variables are to be included and the
model will determine the optimum coefficient for each predictor. When a predictor may
have no relation to the outcome, the analyst must decide whether to remove it from the
model. The model must then be recalibrated with the remaining predictors, whose
coefficient estimates will change. With a decision tree, at every node, we are only
retaining those parameters which improve the fit9.

Finally, as we stated at the top of this chapter, decision trees are invaluable when the
response does not change in a linear way, that is when we have “rectangles” of
responses.

However, decision trees come with a few potential downsides as well. For one, they may
be explainable when there are only a few nodes and levels, but they may quickly become
complex. Imagine a tree with several hundred nodes and a similar number of decision
points, involving more than a dozen explanatory variables. This is impossible for a
human to memorize or intuit

When the response behavior is linear relative to predictors, a decision tree will not
perform as well. Let’s look at an example. We will generate some simulated data, similar
to the kinds of examples we explored in Chapter 14.

9Within the broad family of linear models, there is a technique called “regularization” which may also be
used to drop parameters. Read more in [James et al., 2017].
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tbl_linear <- tibble(

x = runif(sims, 10, 20)

, y = 100 + 1.5 * x + rnorm(sims)

)

And now, we will fit a decision-tree model to the data and form a predicted result.

fit_tree_linear <- rpart(y ~ x, data = tbl_linear)

tbl_linear <- tbl_linear %>%

mutate(

predict_tree = predict(fit_tree_linear, newdata = .)

)

Finally, we will plot the prediction alongside the actual values.

tbl_linear %>%

ggplot(aes(x, y)) +

geom_point(aes(color = 'actual')) +

geom_point(aes(y = predict_tree, color = 'predicted'))
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Figure 17.17: A decision tree fit to linear data

The result is a discrete set of predictions which forecast the same value for segments
along the x-axis. Each segment will be unbiased, but the error will be more than we
would expect from a linear model.
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Figure 17.17 suggests another weakness in decision trees. What would our prediction be
for x < 10 or x > 20? It would simply be whatever we have for those regions at the left
and right side of our data. A linear model, on the other hand, would extrapolate.
Extrapolation is something that a decision tree simply cannot do. To be clear,
extrapolation beyond the range of observation is not something to be done lightly.
However, in capital modeling, or reinsurance pricing, where we require an estimate of
events more extreme than ones we have experienced, it is vital. This is a situation where
a decision tree may not be a good choice.
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Chapter 17 Exercises

1. Using the results from the importance() function, use ggplot2 to create a plot
comparable to the result given by varImpPlot().

2. Using 80% of the records from the tbl frequency data from Chapter 13, fit a
single tree, random forest and gradient boosted machine for the number of claims.

3. Using your model from exercise 2, make predictions for the 20% of records you did
not use in exercise 2. Form a confidence interval around this prediction. Feel free
to use simulation, if that’s easier.

4. Using the tbl medmal data set from Chapter 13, construct a tree-based model to
predict the cumulative paid loss for development lag 2. Use only the upper triangle,
but feel free to use whatever predictors you like. Compare the prediction from your
models to the actual observation in accident year 1997. How does this model
compare with any of the ones you constructed in the exercises in Chapter 15?

5. Using the tbl term life face data from Chapter 13, construct a single tree,
random forest and gradient boosted machine for the face amount purchased. Use
the importance() function to talk about the results. Which model do you think
performs best and why?

6. Consider the tbl term life purchase data from Chapter 13. Using
term purchased as the response variable, which single column will lead to
minimal entropy?

7. Carry out a similar exercise for tbl severity from Chapter 13, but this time find
the three columns which are most effective in dividing the data. What implications
does this have for designing a rating plan?
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